Sobolev inequalities with remainder terms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical dimensions and higher order Sobolev inequalities with remainder terms ∗

Pucci and Serrin [21] conjecture that certain space dimensions behave “critically” in a semilinear polyharmonic eigenvalue problem. Up to now only a considerably weakened version of this conjecture could be shown. We prove that exactly in these dimensions an embedding inequality for higher order Sobolev spaces on bounded domains with an optimal embedding constant may be improved by adding a “li...

متن کامل

On a Sobolev Inequality with Remainder Terms

In this note we consider the following Sobolev inequality

متن کامل

Remainder Terms in the Fractional Sobolev Inequality

We show that the fractional Sobolev inequality for the embedding H̊ s 2 (R ) →֒ L 2N N−s (R ), s ∈ (0, N) can be sharpened by adding a remainder term proportional to the distance to the set of optimizers. As a corollary, we derive the existence of a remainder term in the weak L N N−s -norm for functions supported in a domain of finite measure. Our results generalize earlier work for the non-fract...

متن کامل

Hardy inequalities with optimal constants and remainder terms ∗

We show that the classical Hardy inequalities with optimal constants in the Sobolev spaces W 1,p 0 and in higher-order Sobolev spaces on a bounded domain Ω ⊂ R can be refined by adding remainder terms which involve L norms. In the higher-order case further L norms with lower-order singular weights arise. The case 1 < p < 2 being more involved requires a different technique and is developed only...

متن کامل

Sharp Sobolev inequalities involving boundary terms

Let (M, g) be a compact Riemannian manifold of dimension n (n ≥ 3) with smooth boundary. In [LZ], we established some sharp trace inequality on (M, g). In this paper we establish some sharp Sobolev inequalities using the method in [LZ]. For n ≥ 3, it was shown by Aubin [Au1] and Talenti [T] that, for p = 2n/(n − 2), 1 S 1 = inf R n |∇u| 2 R n |u| p 2/p u ∈ L p (R n) \ {0}, ∇u ∈ L 2 (R n) , (0.1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1985

ISSN: 0022-1236

DOI: 10.1016/0022-1236(85)90020-5